1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration Using Substitution
Solve: ∫01 t...
Question
Solve:
1
∫
0
tan
−
1
(
2
x
1
−
x
2
)
d
x
Open in App
Solution
∫
1
0
t
a
n
−
1
(
2
x
1
−
x
2
)
d
x
∫
1
0
t
a
n
−
1
(
t
a
n
x
)
d
x
∫
1
0
2
x
d
x
=
[
2
x
2
2
]
1
0
=
1
Suggest Corrections
0
Similar questions
Q.
Evaluate:
∫
1
0
tan
−
1
(
2
x
1
−
x
2
)
d
x
Q.
∫
1
0
tan
−
1
(
2
x
−
1
1
+
x
−
x
2
)
d
x
=
Q.
The value of
∫
1
0
tan
−
1
(
2
x
−
1
1
+
x
−
x
2
)
d
x
is
Q.
The integral
∫
1
0
t
a
n
−
1
(
2
x
−
1
1
+
x
−
x
2
)
d
x
simlifies to a value:
Q.
The value of
is
A. 1
B. 0
C. − 1
D.