Solve 1∫0xln(1+x2)dx
We have,
∫10xln(1+x2)dx
=∫10ln(1+x2)×xdx
We know that,
∫u.v=u∫vdx−∫(dudx∫vdx)dx
Then,
∫10ln(1+x2)×xdx=ln(1+x2)∫10xdx−∫10(ddxln(1+x2)∫10xdx)dx
=ln(1+x2)[x22]01−∫10⎛⎜ ⎜ ⎜ ⎜⎝1(1+x2)×12×x22⎞⎟ ⎟ ⎟ ⎟⎠dx
=ln(1+x2)[x22]01−∫10(2(2+x)×12×x22)dx
=ln(1+x2)[x22]01−∫10(1(2+x)×x22)dx
=ln(1+x2)[x22]01−12∫10(x2(2+x))dx
=ln(1+x2)[x22]01−12∫10(x2−4+4(2+x))dx
=ln(1+x2)[x22]01−12∫10(x2−4(2+x)+4(x+2))dx
=ln(1+x2)[x22]01−12∫10((x−2)+4(x+2))dx
=ln(1+x2)[x22]01−12∫10xdx+12∫102dx−12∫104(x+2)dx
=ln(1+x2)[x22]01−12[x22]01+22[x]01−42[ln(x+2)]01
=[ln(1+x2)]011[122−022]−14[12−02]+[1−0]−2[ln(3)−ln(2)]
=[ln(32)−ln(1)]×1[122−022]−14[12−02]+[1−0]−2[ln(3)−ln(2)]
=12⎡⎢ ⎢ ⎢ ⎢⎣ln(32)1⎤⎥ ⎥ ⎥ ⎥⎦−14+1−2ln32
=12ln32−2ln32+34
=ln32(12−2)+34
=34−34ln32
I=34(1−ln(32))
Hence, this is the. Answer.