wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve π/20dx1+(tanx)2,

Open in App
Solution

We have,

I=π20dx1+(tanx)2

I=π20(cosx)2dx(cosx)2+(sinx)2 …….. (1)

We know that,

baf(x)dx=baf(a+bx)dx

Therefore,

I=π20(cos(π2x))2dx(cos(π2x))2+(sin(π2x))2

I=π20(sinx)2dx(sinx)2+(cosx)2 ………. (2)

On adding equation (1) and (2), we get

2I=π20(sinx)2+(cosx)2(sinx)2+(cosx)2dx

2I=π201dx

2I=(x)π20

2I=π2

I=π4

Hence, the value is π4.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon