We have,
I=∫π20dx1+(tanx)√2
I=∫π20(cosx)√2dx(cosx)√2+(sinx)√2 …….. (1)
We know that,
∫baf(x)dx=∫baf(a+b−x)dx
Therefore,
I=∫π20(cos(π2−x))√2dx(cos(π2−x))√2+(sin(π2−x))√2
I=∫π20(sinx)√2dx(sinx)√2+(cosx)√2 ………. (2)
On adding equation (1) and (2), we get
2I=∫π20(sinx)√2+(cosx)√2(sinx)√2+(cosx)√2dx
2I=∫π201dx
2I=(x)π20
2I=π2
I=π4
Hence, the value is π4.