The correct option is
A 2−2√2Given that:
∫π20|sinx−cosx|dx
Since
cosx≥sinx, x∈[0,π4]
sinx≥cosx , x∈[π4,π2]
So,
=∫π40−(sinx−cosx)dx+∫π2π4sinx−cosxdx
=[cosx+sinx]π40+[−cosx−sinx]π2π4
=cos(0)+sin(0)−cos(π4)−sin(π4)−cos(π4)−sin(π4)+cos(π2)+sin(π2)
=1+0−1√2−1√2−1√2−1√2+1
=2−2√2