Solve π/4∫0(1sinx)2dx
Consider the given integral.
I=∫π40(1sinx)2dx
I=∫π40(cscx)2dx
I=∫π40(csc2x)dx
I=[−cotx]π40
I=−(cotπ4−cot0)
I=−(1−0)
I=−1
Hence, this is the answer.
If ∫x0(x1+sin x)2dx=λ,then∫π02x2cos2x2(1+sin x)2dx is