The correct option is C −log(√3−12)
∫π/60cos2x(cosx−sinx)2dx∫π/60cos2x−sin2x(cosx−sinx)2dx∫π/60(cosx−sinx)(cosx+sinx)(cosx−sinx)2dx∫π/60(cosx+sinx)(cosx−sinx)dxputt=cosx−sinxHence,dt=−(cosx+sinx)dx−∫√3−121dtt−[logt]√3−121−[log(√3−12)−log(1)]−log(√3−12)∵log(1)=0