Consider the given integral.
I=∫−11ddx(tan−1(1x))dx
I=∫−1111+1x2dx[ddx(tan−1x=11+x2)]
I=∫−11x2x2+1dx
I=∫−11x2+1−1x2+1dx
I=∫−111dx−∫−111x2+1dx
I=[x]−11−[tan−1(x)]−11
I=[−1−(1)]−[tan−1(−1)−tan−1(1)]
I=[−2]−[tan−1(tan3π4)−tan−1(π4)]
I=[−2]−[3π4−π4]
I=[−2]−[π2]
I=−2−π2
Hence, this is the answer.