We have,
I=∫62√(6−x)(x−2)dx
I=∫62√6x−12−x2+2xdx
I=∫62√8x−12−x2dx
I=∫62√8x−12−16+16−x2dx
I=∫62√(2√7)2−(4−x)2dx
Let
t=4−x
−dt=dx
Therefore,
I=−∫−22√(2√7)2−t2dt
We know that
∫√a2−x2dx=12x√a2−x2+12a2sin−1(xa)+C
Therefore,
I=−[12t√(2√7)2−t2+12(2√7)2sin−1(t2√7)]−22
=−(12(−2)√(2√7)2−(−2)2+12(2√7)2sin−1(−22√7))+
(12(2)√(2√7)2−(2)2+12(2√7)2sin−1(22√7))
I=−(−√28−4+12×28sin−1(−1√7))+(√28−4+12×28sin−1(1√7))
I=−(−√24+14sin−1(−1√7))+(√24+14sin−1(1√7))
I=2√24−14sin−1(−1√7)+14sin−1(1√7)
Hence, the value is 2√24−14sin−1(−1√7)+14sin−1(1√7).