wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve 62(6x)(x2)dx

Open in App
Solution

We have,

I=62(6x)(x2)dx

I=626x12x2+2xdx

I=628x12x2dx

I=628x1216+16x2dx

I=62(27)2(4x)2dx

Let

t=4x

dt=dx

Therefore,

I=22(27)2t2dt

We know that

a2x2dx=12xa2x2+12a2sin1(xa)+C

Therefore,

I=[12t(27)2t2+12(27)2sin1(t27)]22

=(12(2)(27)2(2)2+12(27)2sin1(227))+

(12(2)(27)2(2)2+12(27)2sin1(227))


I=(284+12×28sin1(17))+(284+12×28sin1(17))

I=(24+14sin1(17))+(24+14sin1(17))

I=22414sin1(17)+14sin1(17)

Hence, the value is 22414sin1(17)+14sin1(17).


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon