wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : π/20xdxsinx+cosx

Open in App
Solution

Π/20xsinx+cosxdx
Say,
I=Π/20xsinx+cosxdx(1)
I=Π/20Π/2xsin(Π2x)+cos(Π2x)dx [Using a0f(x)dx=a0f(ax)dx]
I=Π/20Π/2xcosx+sinxdx(2)
Adding (1) and (2) we get
2I=Π/20Π/2sinx+cosxdx
I=Π4Π/201sinx+cosxdx
I=Π4Π/2012(sinx.12+cosx.12)dx
I=Π42Π/201(cosx.cosΠ4+sinx.sinΠ4)dx
I=Π42Π/201cos(xΠ4)dx
I=Π42Π/20sec(xΠ4)dx
I=Π42logsec(xΠ4)+tan(xΠ4)]Π/20
I=Π42[logsecΠ4+tanΠ4logsecΠ4+tanΠ4]
I=Π42[log(2+1)log(21)] [secΠ/4=2=sec(Π/4)]
I=Π42log(2+121) [tanΠ/4=1;tan(Π/4)=1]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon