wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: ππ2x(1+sinx)1+cos2xdx=

Open in App
Solution

Let I=ππ2x(1+sinx)1+cos2xdx
=ππ2x1+cos2xdx+ππ2xsinx1+cos2xdx
=I1+I2
Consider f(x)=2x1+cos2x
Now, f(x)=2(x)1+cos2(x)=2x1+cos2x=f(x)
I1=ππ2x1+cos2xdx=0 since aaf(x)dx=0 if f(x)=-f\left(x\right)$
Consider g(x)=2xsinx1+cos2x
g(x)=2(x)sin(x)1+cos2(x)=2xsinx1+cos2x=g(x)
I2=ππ2xsinxdx1+cos2x
=2×2π0xsinxdx1+cos2x
=4π0xsinxdx1+cos2x
Then I2=4π0(πx)sin(πx)dx1+cos2(πx)
=4π0(πx)sinxdx1+cos2x ......(2)
Adding (1) and (2),we get
2I2=4π0πsinxdx1+cos2x
2I2=4ππ0sinxdx1+cos2x
Put cosx=zsinxdx=dz
When x0,z0
When xπ,z1
2I2=4π11dz1+z2
=4π×[tan1z]11
=4π[tan1(1)tan11]
=4π(π4π4)
=2π2
I2=π2
I=I1+I2=0+π2=π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon