1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Trigonometric Functions
Solve : ∫2xt...
Question
Solve :
∫
sec
2
x
tan
x
d
x
Open in App
Solution
∫
sec
2
x
tan
x
d
x
=
∫
sec
x
(
sec
x
tan
x
)
d
x
Let
u
=
sec
x
then
d
u
=
sec
x
tan
x
d
x
So,
∫
sec
2
x
tan
x
d
x
=
∫
u
d
u
=
u
2
2
Substituting value of u we get
=
sec
2
x
2
+
C
Suggest Corrections
0
Similar questions
Q.
∫
e
sin
x
(
x
cos
x
−
sec
x
tan
x
)
d
x
=
_______
+
C
;
0
<
x
<
π
2
.
Q.
∫
e
x
sec
x
⋅
sec
x
(
1
+
x
tan
x
)
d
x
=
Q.
∫
sec
2
x
+
sec
x
tan
x
d
x
Q.
Find
∫
sec
(
x
)
tan
(
x
)
d
x