Consider ∫sin4xdx
=14∫(2sin2x)2dx
=14∫(1−cos2x)2dx
=14∫(1+cos22x−2cos2x)dx
=14∫dx+14∫cos22xdx−24∫cos2xdx
=14∫dx+18∫(cos4x+1)dx−24∫cos2xdx
=14∫dx+18∫cos4xdx+18∫dx−24∫cos2xdx
=14x+18sin4x4+18x−12sin2x2+c
=2+18x+18sin4x4−12sin2x2+c
=38x+132sin4x−14sin2x+c