I=∫√cosxsinxdx=∫√cotxdxLet,cotx=u⇒x=arccotu∴I=∫−√u1+u2du⇒I=−∫√u1+u2duagain,applyingu=v2wegetI=−∫√2√v4+v2dv⇒I=−√2∫√v4+v2again,let,w=√v⇒I=−√2∫2w24+w4dw⇒I=−√2.2∫w4(w2−2w+2)−w4(w2+2w+2)dw[bypartialfraction]⇒I=−√2.2[∫w4(w2−2w+2)dw−∫w4(w2+2w+2)dw]=−√2.2[[18log([(√2cot(x))2]−2√cotx+2)+2arctan(√2cotx−1)]−[18log([(√2cot(x))2]+2√cotx+2)−2arctan(√2cotx+1)]]+C