wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve : tanx.dx

Open in App
Solution

put tanx=t2
sec2xdx=2tdt
(1+tan2x)dx=2tdt
dx=2tdt1+t4

tanx.dx
t×2t1+t4dt
2t21+t4dt


[(t2+1)+(t21)](1+t4)dt

(t2+1)/(1+t4)dt+(t21)/(1+t4)dt

(1+1/t2)/(t2+1/t2)dt+(11/t2)/(t2+1/t2)dt

(1+1/t2)dt/[(t1/t)2+2]+(11/t2)dt/[(t+1/t)22]

Let t−1/t=u for the first integral (1+1/t2)dt=du

and t+1/t=v for the 2nd integral (11/t2)dt=dv

Integral
=du/(u2+2)+dv/(v22)

=(1/2)tan1(u/2)+(1/22)log(v2)/(v+2)l+c

=(1/2)tan1[(t21)/t2]+(1/22)log(t2+1t2)/t2+1+t2)+c

[12tan1(tanx12tanx+122logtanx+12tanxtanx1+2tanx)]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon