put tanx=t2
sec2xdx=2tdt
(1+tan2x)dx=2tdt
dx=2tdt1+t4
∫√tanx.dx
∫t×2t1+t4dt
2∫t21+t4dt
∫[(t2+1)+(t2−1)](1+t4)dt
⇒∫(t2+1)/(1+t4)dt+∫(t2−1)/(1+t4)dt
⇒∫(1+1/t2)/(t2+1/t2)dt+∫(1−1/t2)/(t2+1/t2)dt
⇒∫(1+1/t2)dt/[(t−1/t)2+2]+∫(1−1/t2)dt/[(t+1/t)2−2]
Let t−1/t=u for the first integral ⇒(1+1/t2)dt=du
and t+1/t=v for the 2nd integral ⇒(1−1/t2)dt=dv
Integral
=∫du/(u2+2)+∫dv/(v2−2)
=(1/√2)tan−1(u/√2)+(1/2√2)log(v−√2)/(v+√2)l+c
=(1/√2)tan−1[(t2−1)/t√2]+(1/2√2)log(t2+1−t√2)/t2+1+t√2)+c
[1√2tan−1(tanx−1√2tanx+12√2log∣∣∣tanx+1−√2√tanxtanx−1+√2√tanx∣∣∣)]