wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve tan11x1+xdx

Open in App
Solution

tan11x1+xdx
Put x=cos2θ
dx=sin2θ.2dθ
=2tan11cos2θ1+cos2θ(sin2θ).dθ
1cos(2θ)=2sin2(θ)
1+cos(2θ)=2cos2θ
=2tan1tan2θ.sin(2θ).dθ
=2θ.sin(2θ).dθ (tan1(tanx)=x)
Integration by parts;
=2[θ.sin2θdθ(dθdθsin2θ.dθ)dθ]
=2[θ(cos2θ)2cos(2θ)dθ2]
=θ.cos(2θ)sin(2θ)2+c
=12cos1(x).(x)(1x2)2+c
Since, cos2θ=x
θ=12cos1(x)
sin(2θ)=1cos22θ
=1x2

1234854_1299255_ans_87f7612b2db1430ebbef259624f4e019.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon