∫tan−1√1−x1+xdx
Put x=cos2θ
dx=−sin2θ.2dθ
=2∫tan−1√1−cos2θ1+cos2θ(−sin2θ).dθ
1−cos(2θ)=2sin2(θ)
1+cos(2θ)=2cos2θ
=−2∫tan−1√tan2θ.sin(2θ).dθ
=−2∫θ.sin(2θ).dθ (tan−1(tanx)=x)
Integration by parts;
=−2[θ.sin2θdθ−∫(dθdθ∫sin2θ.dθ)dθ]
=−2[θ(−cos2θ)2−∫−cos(2θ)dθ2]
=θ.cos(2θ)−sin(2θ)2+c
=12cos−1(x).(x)−(√1−x2)2+c
Since, cos2θ=x
θ=12cos−1(x)
sin(2θ)=√1−cos22θ
=√1−x2