wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
x2exsinxdx

Open in App
Solution

I=x2exsinxdx
Integrating by parts u=x2.V=exsinx
u1=2x,vdx=12ex(sinxcosx) [Integrated by parts]
I=x2exsindx2x(exsinxdx)dx
=x2ex2(sinxcosx)xex(sinxcosx)dx
Now, ex(cosxsinx)dx=excosx[exf(x)+f(x)dx=exf(x)]
I=x2ex2(sinxcosx)+[xexcosx(1)excosxdx] [Using by parts]
=x2ex2(sinxcosx)+xexcosxex2(sinx+cosx)+C [Using by parts]
=ex2[sin(x)(x21)+cosx(x2+2x1)]+C
I=ex2((x21)sinx(x1)2cosx)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon