I=∫x√x+2dx
Let x + 2 = t
dx = dt
I=∫(t−2)√tdt
=∫t√tdt−∫2√tdt
=∫t3/2dt−2∫t1/2dt
=t3/2+13/2+1−2t1/2+11/2+1+c
=t5/25/2−2.t3/23/2+c
=25t5/2−43t3/2+c
25(x+2)5/2−43(x+2)√x+2+c
= 25(x+2)2√(x+2)−43(x+2)√x+2+c
=21(x+2)√x+2((x+2)5−23)+c
=2(x+2)√x+2(3x+6−1015)+c
=2(x+2)√x+2(3x−415)+c
=215(x+2)(3x−4)√x+2+c