Solve into simplest form: tan−1(a−b1+ab)+tan−1(b−c1+bc)
Open in App
Solution
tan−1(a−b1+ab)+tan−1(b−c1+bc) Let a = tan x b = tan y c = tan z ∴tan−1(tany−tany1+tanx.tany)+tan−1(tany−tanz1+tany.tanz) =tan−1(tan(x−y))+tan−1(tan(y−z))=x−y+y−z=x−z=tan−1a−tan−1c