Consider the given expression.
(1−tanx)2+(1−cotx)2+(secx−cosecx)2
=1+tan2x−2tanx+1+cot2x−2cotx+sec2x+cosec2x−2secxcosecx
We know that,
sec2x=1+tan2x
1+cot2x=cosec2x
Therefore,
=sec2x−2tanx+cosec2x−2cotx+sec2x+cosec2x−2secxcosecx
=2sec2x−2(tanx+cotx)+2cosec2x−2secxcosecx
=2cos2x+2sin2x−2(sinxcosx+cosxsinx)−2sinxcosx
=2(sin2x+cos2x)sin2xcos2x−2(sin2x+cos2xsinxcosx)−2sinxcosx
=2sin2xcos2x−2sinxcosx−2sinxcosx
=2sin2xcos2x−4sinxcosx
=2(1−2sinxcosx)sin2xcos2x
=2×4(1−sin2x)4sin2xcos2x
=8(1−sin2x)sin2x
=8(cosec2x−1)
Hence, the value is 8(cosec2x−1).