wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: (1+tany)(dxdy)+2xdy=0

Open in App
Solution

Given:(1+tany)(dxdy)+2xdy=0

dx+tanydxdytanydy+2xdy=0

dy(1+tany2x)=(1+tany)dx

dydx=1+tany12x+tany

or dxdy=12x+tany1+tany

dxdy=1+tany1+tany2x1+tany

I.F=siny+cosyey

x× I.F=Q× I.Fdy+c

xsiny+cosyey=1×siny+cosyeydy+c

xey(siny+cosy)=eysinydy+eycosydy+c

Consider eysinydy is of the form

eaxsinbxdy=eaxa2+b2(asinbxbcosbx)

Here a=1 and b=1

Hence eycosydy=ey2(cosy+siny)

Now combining and substituting in the required solution we get

xey(siny+cosy)=ey2(sinycosy)+ey2(siny+cosy)+c

xey(siny+cosy)=eysiny+c

Dividing throughout by ey we get

x(siny+cosy)=siny+cey

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon