(1+x2)dydx−x=tan−1x
⇒dydx−x1+x2=tan−1x1+x2 on dividing both sides by 1+x2
⇒dy=x1+x2dx+tan−1x1+x2dx on multiplying both sides by dx
⇒∫dy=∫x1+x2dx+∫tan−1x1+x2dx on integrating both sides w.r.t x
Consider ∫x1+x2dx
Take t=1+x2⇒dt=2xdx
⇒dt2=xdx
Now, ∫x1+x2dx=∫12dt=12ln|t|=12ln∣∣1+x2∣∣ where t=1+x2
Consider ∫tan−1x1+x2dx
Let t=tan−1x⇒dt=11+x2dx
Now, ∫tan−1x1+x2dx=∫tdt=t22=(tan−1x)22 where t=tan−1x
Thus, y=12ln∣∣1+x2∣∣+(tan−1x)22+c where c is the constant of integration.