wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve (1+y2)+(xetan1y)dydx=0

Open in App
Solution

(1+y2)+(xetan1y)dydx=0
(1+y2)dydx+xetan1y=0
(1+y2)dydx+x=etan1y
dydx+x1+y2=etan1y(1+y2)
This is in form of dydx+Px=Q
Integrating Factor =I.F.=ePdy
I.F=edy1+y2
I.F=etan1y
x=Q.(I.F)dy
=(etan1y1+y2).(etan1y)dy
=e2tan1y1+y2dy; Let tan1y=t;dy1+y2=dt
=e2tdt
=e2t2+C
x=e2tan1y2+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon