(3x2+y2)dy+(x2+3y2)dx=0dydx=−(x2+3y2)(3x2+y2)
y=vx
dydx=v+xdvdx
v+xdvdx=−(x2+3v2x2)(3x2+v2x2)
=−(1+3v23+v2)
xdvdx=−(1+3v2)(3+v2)−v
xdvdx=−1−3v2−3v−3v33+v2
xdvdx=−(1+v)3(3+v2)
∫3+v2(1+v)3dx=∫dxx
∫3+v2(1+v)3dv+∫v2(1+v)3dv=∫dxx
3.(1+v)(−3+1)(−3+1)v3(1+v)3−∫v2[−v+2](1+v)4dv∫−v3(1+v)4dv+∫2v2(1v)4dv
⇒ln|x+1|+3x+1−32(x+1)2+13(x+1)3+2[−x23(1+x)3+−2x−13(x+1)2]
⇒−ln|x+1|−3x+1+32(x+1)2+32(x+1)2−13(x+1)3−2x23(1+x)3+2(−2x−1)3(x+1)2
x3(1+x)3+ln(x+1)+3x+1−32(x+1)2+13(x+1)3+2x23(1+x)3−2(−2x+1)3(x+1)2
Replace x by (v) in all above equation By mistake written x, its (v) ,
So, we get : { and replace v by yx }
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩(yx)31(1+y/x)3+ln(yx+1)+3(y/x+1)−32(y/x+1)2+13(y/x+1)3+2(y/x)3(1+y/x)3+2(2(y/x)−1)3(y/x+1)2=logx+logc⎫⎪
⎪
⎪
⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭