wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
(3x2+y2)dy+(x2+3y2)dx=0

Open in App
Solution

(3x2+y2)dy+(x2+3y2)dx=0
dydx=(x2+3y2)(3x2+y2)
y=vx
dydx=v+xdvdx
v+xdvdx=(x2+3v2x2)(3x2+v2x2)
=(1+3v23+v2)
xdvdx=(1+3v2)(3+v2)v
xdvdx=13v23v3v33+v2
xdvdx=(1+v)3(3+v2)
3+v2(1+v)3dx=dxx
3+v2(1+v)3dv+v2(1+v)3dv=dxx
3.(1+v)(3+1)(3+1)v3(1+v)3v2[v+2](1+v)4dvv3(1+v)4dv+2v2(1v)4dv
ln|x+1|+3x+132(x+1)2+13(x+1)3+2[x23(1+x)3+2x13(x+1)2]
ln|x+1|3x+1+32(x+1)2+32(x+1)213(x+1)32x23(1+x)3+2(2x1)3(x+1)2
x3(1+x)3+ln(x+1)+3x+132(x+1)2+13(x+1)3+2x23(1+x)32(2x+1)3(x+1)2
Replace x by (v) in all above equation By mistake written x, its (v) ,
So, we get : { and replace v by yx }
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪(yx)31(1+y/x)3+ln(yx+1)+3(y/x+1)32(y/x+1)2+13(y/x+1)3+2(y/x)3(1+y/x)3+2(2(y/x)1)3(y/x+1)2=logx+logc⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Using Laws of Exponents
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon