1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Determinant
Solve | [ ...
Question
Solve
∣
∣ ∣
∣
1
1
1
a
b
c
a
3
b
3
c
3
∣
∣ ∣
∣
=
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Open in App
Solution
∣
∣ ∣
∣
1
1
1
a
b
c
a
3
b
3
c
3
∣
∣ ∣
∣
c
1
→
c
1
−
c
2
,
c
2
→
c
2
−
c
3
=
∣
∣ ∣
∣
0
0
1
a
−
b
b
−
c
c
a
3
−
b
3
b
3
−
c
3
c
3
∣
∣ ∣
∣
=
∣
∣ ∣ ∣
∣
0
0
1
a
−
b
b
−
c
c
(
a
−
b
)
(
a
2
+
b
2
+
a
b
)
(
b
−
c
)
(
b
2
+
c
2
+
b
c
)
c
3
∣
∣ ∣ ∣
∣
{
(
A
3
−
B
3
)
=
(
A
−
B
)
(
A
2
+
B
2
+
A
B
)
}
taking
(
a
−
b
)
from
c
1
and
(
b
−
c
)
from
c
2
⇒
(
a
−
b
)
(
b
−
c
)
∣
∣ ∣
∣
0
0
1
1
1
c
a
2
+
b
2
+
a
b
b
2
+
c
2
+
b
c
c
3
∣
∣ ∣
∣
⇒
(
a
−
b
)
(
b
−
c
)
[
0
−
0
+
(
b
2
+
c
2
+
b
c
−
a
2
−
b
2
−
a
n
)
]
⇒
(
a
−
b
)
(
b
−
c
)
[
c
2
−
a
2
+
b
(
c
−
a
)
]
⇒
(
a
−
b
)
(
b
−
c
)
[
(
c
−
a
)
(
c
+
a
)
+
b
(
c
−
a
)
]
⇒
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Suggest Corrections
1
Similar questions
Q.
Prove that
|
⎡
⎢
⎣
1
1
1
a
b
c
a
3
b
3
c
3
⎤
⎥
⎦
| =
(
a
−
b
)
(
b
−
c
)
(
c
−
a
)
(
a
+
b
+
c
)
Q.
By using properties of determinants, show that:
(i)
(ii)