We have to solve
(D2−4D+1)y=x2
The characteristic equation is p2−4p+1=0
⇒p=4±√16−42=4±2√32=2±√3
Thus Complementary function C.F.=Ae(2+√3)x+Be(2−√3)x
Particular integral P.I.=1D2−4D+1(x2)
=[1−(4D−D2)]−1(x2)
=[1+(4D−D2)+(4D−D2)2+...](x2)
=[1+4D+15D2+...](x2)
∴P.I.=x2+8x+30
Hence the general solution is y=C.F.+P.I.
y.=Ae(2+√3)x+Be(2−√3)x+(x2+8x+30)