Simplify the LHS of (1+tan2A1+cot2A)=(1−tanA1−cotA)2.
(1+tan2A1+cot2A)=sec2Acsc2A
=1cos2A1sin2A
=sin2Acos2A
=tan2A
Now simplify the RHS of (1+tan2A1+cot2A)=(1−tanA1−cotA)2.
(1−tanA1−cotA)2=⎛⎜ ⎜ ⎜⎝1−tanA1−1tanA⎞⎟ ⎟ ⎟⎠2
=(tanA(1−tanA)−(1−tanA))2
=tan2A
Therefore, LHS=RHS=tan2A.