wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve
(1+tan2A1+cot2A)=(1tanA1cotA)2=tan2A

Open in App
Solution

Simplify the LHS of (1+tan2A1+cot2A)=(1tanA1cotA)2.

(1+tan2A1+cot2A)=sec2Acsc2A

=1cos2A1sin2A

=sin2Acos2A

=tan2A

Now simplify the RHS of (1+tan2A1+cot2A)=(1tanA1cotA)2.

(1tanA1cotA)2=⎜ ⎜ ⎜1tanA11tanA⎟ ⎟ ⎟2

=(tanA(1tanA)(1tanA))2

=tan2A

Therefore, LHS=RHS=tan2A.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon