∣∣x2+4x+3∣∣+2x+5=0
|(x+1)(x+3)|+2x+5=0
Case I:- x≤−3 and x≥−1
x2+4x+3+2x+5=0
x2+6x+8=0
which gives x=−4,−2, but x=−2 doesnot belong to the considered range
So, x=−4 only satisfies this case.
Case II:- −3≤x≤−1
x2+4x+3−2x−5=0
x2+2x−2=0
x=−2±√122=−1±√3
No integral value of x satisfies this case.