The correct option is C xycosyx=c
[xcosyx+ysinyx]y=x[ysinyx−xcosyx]×dydx
Given differential eqn can be written as
dydx=y[xcosyx+ysinyx]x[ysinyx−x cosyx] ....(1)
Substitute y=vx
dydx=v+xdvdx
So eqn (1) becomes
v+xdvdx=v[cosv+vsinv][vsinv−cosv]
xdvdx=2vcosvvsinv−cosv
vsinv−cosvvcosvdv=2xdx
Integrating both sides,
∫tanvdv−∫1vdv=2∫1xdx
−logcosv−logv=2logx+logC
⇒1vcosv=Cx2
⇒xycos(yx)=1C
⇒xycos(yx)=c