wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
(xdydxy)tan1yx=x

Open in App
Solution

Given, (xdydxy)tan1yx=x
(xdyydxdx)tan1yx=x
x2d|y|xdxdx.tan1yx=x [d(y)xdx=ydxxdyx2]
tan1(yx)d(yx)=dxx
Integrating both sides
tan1(yx)d(yx)=dxx
[tan1(yx).d(yx)1(yx)2+1d(yx)d(yx)]=logx+c [using by parts ]
[(tan1(yx))(yx)12log(yx)2+1]]=logx+c
yxtan1(yx)+12log((yx)2)+1]=logx+c

1134264_1134345_ans_ae7b8560620740d187045550898d248f.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon