Given, (xdydx−y)tan−1yx=x
⇒(xdy−ydxdx)tan−1yx=x
−x2d|y|xdxdx.tan−1yx=x [∵d(y)xdx=ydx−xdyx2]
−tan−1(yx)d(yx)=dxx
Integrating both sides
⇒−∫tan−1(yx)d(yx)=∫dxx
−[tan−1(yx).∫d(yx)−∫1(yx)2+1∫d(yx)d(yx)]=logx+c [using by parts ]
−[(tan−1(yx))(yx)−12log(yx)2+1]]=logx+c
−yxtan−1(yx)+12log((yx)2)+1]=logx+c