limx→0 cosx−cotxx
=limx→0 cosx−cosxsinxx
=limx→0 sinxcosx−cosxxsinx
=limx→0 cosx(sinx−1)xsinx
Now ,
limx→0− cosx(sinx−1)xsinx
=limh→0 cos(0−h)(sin(0−h)−1)(0−h)sin(0−h)
=limh→0 cosh(−sinh−1)−h×−sinh
=limh→0 −cosh(sinh+1)hsinh
=−∞
limx→0+ cosx(sinx−1)xsinx
=limh→0 cos(0+h)(sin(0+h)−1)(0+h)sin(0+h)
=limh→0 cosh(sinh−1)hsinh
=1×−10
=−∞
So ,limx→0 cosx−cotxx=−∞