LetL=limx→0sin2x+asinxx3=limx→0sinx(2cosx+a)x×x2=limx→02cosx+ax2LetLiffinitelimx→0Driszero∴Lisfiniteherelimx→0Nr=0⇒limx→02cosx+a=0⇒2+a=0∴a=−2NowL=limx→02cosx−2x2=−2limx→01−cosxx2=−2limx→02sin2x2x24=−44limx→0sin2x2(x2)2=−1limx→0(sinx2(x2))2=−1×12[limx→0sinxx=1]=−1