The correct option is A 0
limx→π2[tanxln(sinx)]
limx→π2[ln(sinx)cotx]
Applying L'Hopital's rule, we get:
limx→π2[(cosxsinx)−cosec2x]
limx→π2[−cotxcosec2x]
limx→π2[−cosxcosec3x].
Direct substitution now, yields: 01, which equals 0.
Therefore,
limx→π2[tanxln(sinx)]=0