Given:log4log2log√2log3(x−2006)
log4log2log√2log3(x−2006)=0
4log4log2log√2log3(x−2006)=40
log2log√2log3(x−2006)=1
2log2log√2log3(x−2006)=21
log√2log3(x−2006)=2
√2log√2log3(x−2006)=√22
log3(x−2006)=2
3log3(x−2006)=32
⇒x−2006=9
⇒x=2015
Log6+ 2log5+log4-log3-log2=2
Prove it