The correct option is B 12log(a2+b2)+itan−1(ba)
Log (a+ib)=ω=x+iy. say
∴ By laws of logarithm
ex+iy=a+ib
∴ex.eiy=a+ib
∴ex[cis.y]=a+ib
⇒(excosy)+(exsiny)i=a+ib
equating the real & imaginary part,
a=excosy------(1)
b=exsiny------(2)
To find ′x′, square (1) & (2) & add them
∴e2x(sin2y+cos2y)=a2+b2
∴e2x=a2+b2
take log, loge2x=log(a2+b2)
∴2xloge=log(a2+b2)
∴x=12log(a2+b2)
To find 'y', divide (2) by (1) giving,
b/a=tany
∴y=tan−1b/a
∴log(a+ib)=x+iy=12log(a2+b2)+itan−1(b/a)