Apply the limits on the given function,
limx→02x−1√1+x−1
=20−1√1+0−1
=00
This is the indeterminate form, therefore, applying L’Hospitals rule,
limx→02x−1√1+x−1=limx→02xlog212√1+x
=20log212√1+0
=log212
=2log2
=log22
=log4
limx→02x−1(1+x)12−1