We have,
limx→0(cosecx−cotxx)
This is 00 form.
So, apply L-Hospital rule,
limx→0(−cosecxcotx−(−cosec2x)1)
limx→0(cosec2x−cosecxcotx)
limx→0(1sin2x−cosxsin2x)
limx→0(1−cosxsin2x)
This is also 00 form.
So, again apply L-Hospital rule,
limx→0(0−(−sinx)2sinxcosx)
limx→0(sinx2sinxcosx)
limx→0(12cosx)
=12cos0
=12
Hence, the value is 12.