We have,
limx→0{loge(1+x)x2+x−1x}
limx→0{loge(1+x)x2}+limx→0{x−1x}
By using L-hospital rule,
limx→0{12x(1+x)}+limx→0{1−01}
limx→0{12x+2x2}+limx→0{1}
10+1
=∞
Hence, the value is ∞.
Solve: limx→∞(√x2+x+1−√x2+1)