Solve limx→0x2cosx1−cosx
Consider the given function.
limx→0(x2cosx1−cosx)
This is 00 form.
So, apply L-Hospital rule,
limx→0(x2(−sinx)+2xcosx0−(−sinx))
limx→0(−x2sinx+2xcosxsinx)
This is 00 form.
Again, L-Hospital rule
limx→0(−x2cosx−2xsinx+2cosx+2x(−sinx)cosx)
limx→0(−x2cosx−4xsinx+2cosxcosx)
=0−0+2cos0cos0
=2
Hence, this is the answer.