Solve limx→π2(secx−tanx)
Simplifying the limit limx→π2(secx−tanx).
limx→π2(secx−tanx)=limx→π2(1−sinxcosx)
=1−sinπ2cosπ2
=00
This gives the indeterminate value, so applying L’Hospitals Rule,
limx→π2(1−sinxcosx)=limx→π2(−cosx−sinx)
=cosπ2sinπ2
=01
=0