The initial form for the limit is indeterminate
∞−∞So, use the conjugate
Wehavelimx→∞(√x2+x−x)
Since,
=(√x2+x−x)1.(√x2+x+x)(√x2+x+x)=x2+x−x2√x2+x+x=x√x2+x−x
x√x2+x+x=x√x2√1+1x+x(forx≠)=xx√1+1x+x(forx>0)=xx(√1+1x+1)=1√1+1x+1∴limx→∞1√1+1x+1=1√1+1=12
Hence, this is the answer.