The correct option is
C 12limx→π1+cosxtan2x
Put x=π+h
limh→01+cos(π+h)tan2(π+h)=limh→01−coshtan2h
We can say that cosh=1−2sin2h2
1−cosh=2sin2h2
=limh→02sin2h2sin2hcos2h=2cos2hlimh→0⎛⎜
⎜
⎜⎝sinh2sinh⎞⎟
⎟
⎟⎠2
=2limh→0⎛⎜
⎜
⎜⎝sinh2h2×hsinh×12⎞⎟
⎟
⎟⎠2
We know that limh→0sinhh=1
=2×(12)2=2×14=12.