We have,
sec[tan−15+tan−115−tan−134]
=sec⎡⎢ ⎢ ⎢⎣tan−1⎛⎜ ⎜ ⎜⎝5+151−5×15⎞⎟ ⎟ ⎟⎠+tan−134⎤⎥ ⎥ ⎥⎦
=sec⎡⎢ ⎢ ⎢⎣tan−1⎛⎜ ⎜ ⎜⎝2650⎞⎟ ⎟ ⎟⎠+tan−134⎤⎥ ⎥ ⎥⎦
=sec[tan−1∞+tan−134]
=sec[π2+tan−134]
=−csc(tan−134)
Let tan−134=x
tanx=34
tanx=34=pb
By Pythagoras theorem,
h2=p2+b2
h2=32+42
h2=25
h=5
Then,
cscx=hp=53
x=csc−153
Now,
=−csc(csc−1(53))
=−53
Hence, this is the answer.