Solve: sin−145+sin−1513+sin−11665
sin−1(45)+sin−1(513)+sin−1(1665)=π2
sin−1A+sin−1B=sin−1(A√1−B.2+B√1−B2)
sin−1(45√1−(512)2+513√1−(45)2)
sin−1(6365)
sin−1(6365)+sin−11665
Applying some formula
sin−1(6365√1−(−1665)2+1665√1−(6365)2)
sin−1(1)
sin−1(sinπ/2)
π/2