1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Relation between Inverses of Trigonometric Functions and Their Reciprocal Functions
Solve: sin-1...
Question
Solve:
sin
−
1
(
1
−
x
)
−
2
sin
−
1
x
=
π
2
Open in App
Solution
sin
−
1
(
1
−
x
)
−
2
sin
−
1
x
=
π
2
⇒
−
2
sin
−
1
x
=
π
2
−
sin
−
1
(
1
−
x
)
⇒
−
2
sin
−
1
x
=
cos
−
1
(
1
−
x
)
.......
(
1
)
Let
sin
−
1
x
=
a
⇒
−
2
a
=
cos
−
1
(
1
−
x
)
⇒
cos
2
a
=
1
−
x
⇒
1
−
2
sin
2
a
=
1
−
x
⇒
1
−
2
[
sin
(
sin
−
1
x
)
]
2
=
1
−
x
⇒
1
−
2
x
2
=
1
−
x
⇒
2
x
2
−
x
=
0
⇒
x
(
2
x
−
1
)
=
0
⇒
x
=
0
and
x
=
1
2
But
x
=
1
2
does not satisfy the equation
Taking equation
sin
−
1
(
1
−
x
)
−
2
sin
−
1
x
=
π
2
Put
x
=
1
2
in L.H.S
sin
−
1
(
1
−
1
2
)
−
2
sin
−
1
1
2
=
sin
−
1
(
1
2
)
−
2
sin
−
1
(
1
2
)
=
π
6
−
2
×
π
6
=
−
π
6
≠
π
2
Hence
x
=
1
2
not possible.
∴
x
=
0
is the only solution.
Suggest Corrections
1
Similar questions
Q.
Solve:
s
i
n
−
1
(
1
−
x
)
−
2
s
i
n
−
1
x
=
π
2
Q.
If
sin
−
1
(
1
−
x
)
−
2
sin
−
1
x
=
π
/
2
, then
x
equals-
Q.
Solve
,
then
x
is equal to
(
A)
(
B)
(
C)
0 (
D)