We have,
sin−1(x√x2+a2)
Since,
sin−1x=tan−1(x√1−x2)
Therefore,
=tan−1⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝x√x2+a2 ⎷1−(x√x2+a2)2⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝x√x2+a2√1−x2(x2+a2)⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝x√x2+a2√x2+a2−x2(x2+a2)⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜ ⎜ ⎜ ⎜⎝x√x2+a2√a2(x2+a2)⎞⎟ ⎟ ⎟ ⎟ ⎟ ⎟⎠
=tan−1⎛⎜ ⎜ ⎜⎝x√x2+a2a√x2+a2⎞⎟ ⎟ ⎟⎠
=tan−1(xa)
Hence, this is the answer.