Consider the given function =sin−1(1−x21+x2)
Let, put x=tanA then A=tan−1x ……. (1)
Then,
sin−1(1−tan2A1+tan2A)
=sin−1⎛⎜ ⎜ ⎜ ⎜⎝1−sin2Acos2A1+sin2Acos2A⎞⎟ ⎟ ⎟ ⎟⎠
=sin−1(cos2A−sin2Acos2A+sin2A)
=sin−1(cos2A1)
=sin−1cos2A
=sin−1sin(900−2A)
=900−2A
By equation (1) and we get,
=900−2tan−1x
Hence, this is the answer.