1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
Solve: sin -...
Question
Solve:
sin
−
1
x
+
sin
−
1
√
1
−
x
2
Open in App
Solution
REF.Image.
I
=
s
i
n
−
1
x
+
s
i
n
−
1
√
1
−
x
2
In
△
A
B
C
⇒
s
i
n
A
=
(
x
1
)
⇒
A
=
s
i
n
−
1
(
x
)
s
i
n
C
=
√
1
−
x
2
1
⇒
C
=
s
i
n
−
1
(
√
1
−
x
2
)
∴
A
+
C
=
s
i
n
−
1
(
x
)
+
s
i
n
−
1
(
√
1
−
x
2
)
A
+
B
+
C
=
180
∘
⇒
A
+
90
+
C
=
180
∘
⇒
A
+
C
=
90
∘
=
π
/
2
∴
s
i
n
−
1
(
x
)
+
s
i
n
−
1
(
√
1
−
x
2
)
=
π
/
2
Suggest Corrections
0
Similar questions
Q.
Solve for
x
:
sin
−
1
x
√
1
+
x
2
+
sin
−
1
1
√
1
+
x
2
=
sin
−
1
(
1
+
x
√
1
+
x
2
)
Q.
Solve:
∫
sin
−
1
x
√
1
−
x
2
Q.
Solve
2
c
o
s
−
1
x
=
s
i
n
−
1
(
2
x
√
1
−
x
2
)
.
Q.
Solve
is equal to
(A)
(
B)
(
C)
(
D)