wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve sin2x+14sin23x=sin23x

A
x=nπ or x=nπ+π6,nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=nπ or x=nπ+π3,nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=nπ or x=nπ+π6(1)n,nϵz
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x=nπ or x=nπ+π3(1)n,nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C x=nπ or x=nπ+π6(1)n,nϵz
sin2x+14sin23x=sin23x
sin2x+14(3sinx4sin3x)2=(3sinx4sin3x)2
16sin7x4sin6x24sin5x+6sin4x+9sin3x134sin2x=0
sin2x(16sin5x4sin4x24sin3x+6sin2x+9sinx134)=0
sin2x=0 ....(1)

or 16sin5x4sin4x24sin3x+6sin2x+9sinx134=0 .....(2)
sinx=12 satisfies eqn (2)
sinx=sinπ6
x=nπ+(1)nπ6;nI
Now, solution of eqn (1) is
x=mπ;mI

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon