No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=nπ or x=nπ+π3,nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=nπ or x=nπ+π6(−1)n,nϵz
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
x=nπ or x=nπ+π3(−1)n,nϵz
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cx=nπ or x=nπ+π6(−1)n,nϵz sin2x+14sin23x=sin23x ⇒sin2x+14(3sinx−4sin3x)2=(3sinx−4sin3x)2 ⇒16sin7x−4sin6x−24sin5x+6sin4x+9sin3x−134sin2x=0 ⇒sin2x(16sin5x−4sin4x−24sin3x+6sin2x+9sinx−134)=0 ⇒sin2x=0 ....(1)
or 16sin5x−4sin4x−24sin3x+6sin2x+9sinx−134=0 .....(2) sinx=12 satisfies eqn (2) ⇒sinx=sinπ6 ⇒x=nπ+(−1)nπ6;n∈I Now, solution of eqn (1) is x=mπ;m∈I