Combining the first two and last two terms, we get
2sin3θcosθ+2cosαsin(−θ)=cosα
2sin3θ−2sinθ=1
or 2(3sinθ−4sin3θ)−2sinθ=1
or 8sin3θ−4sinθ+1=0.
Clearly sinθ=12 satisfies it
∴(2sinθ−1)(4sin2θ+2sinθ−1)=0
sinθ=1/2=sin(π/6)
∴θ=nπ+(−1)nπ/6
Also sinθ=−2±√4+162=√5−14,−√5+14
sinθ=sin18o=sin(π/10)
∴θ=nπ+(−1)nπ/10
sinθ=−sin54o=sin(−3π10)
∴θ=nπ−(−1)n3π10.