Converting the angles in radians to degrees, we get,
=sin(10∘) sin(30∘) sin(50∘) sin(70∘)
=sin(10∘) sin(50∘) sin(70∘)2 ------ sin(30∘)=12
We know that, cos(90∘−x)=sin(x)
=cos(80∘) cos(40∘) cos(20∘)2
=(cos(80∘+40∘)+cos(80∘−40∘)) cos(20∘)4
=(−12+cos(40∘)) cos(20∘)4
=(cos(40∘) cos(20∘)−cos(20∘)24
=2cos(40∘) cos(20∘)−cos(20∘)8
=cos(40∘+20∘)+cos(40∘−20∘)−cos(20∘)8
=12+cos(20∘)−cos(20∘)8
=128
=116